A Short History of Nearly Everything | Bill Bryson |
Dragons of Eden | Carl Sagan |
Cosmos | Carl Sagan |
Mind's I | Daniel Dennet and Douglas Hofstader |
Stumbling on Happiness | Daniel Gilbert |
Godel Escher Bach | Douglas Hofstader |
Blackholes and Warped Spacetime | Kip Thorne |
Complexity | Mitchell Waldrop |
The God Delusion | Richard Dawkins |
The Selfish Gene | Richard Dawkins |
Climibing Mount Improbable | Richard Dawkins |
The Greatest Show on Earth | Richard Dawkins |
Shadows of the Mind | Roger Penrose |
The Road to Reality | Roger Penrose |
Programming the Universe | Seth Lloyd |
A Brief History of Time | Stephen Hawking |
The Universe in a Nutshell | Stephen Hawking |
At Home in the Universe | Stuart Kauffman |
The User Illusion | Tor Norretranders |
Tuesday, December 29, 2009
Reading list for 2010
Monday, December 7, 2009
Stop the climate change denial.
I guess one needs to be bit careful these days. I actually think that the attempts to blame the sun and volcanoes for climate change are no different from citing "astrological" reasons for events in our lives. A lot of human do so. I'm not surprised that some of them are trying to use similar "reasons" for climate change. Seriously people it IS that lame.
I do hope that better sense prevails in copenhagen. I woke up today morning to a nice editorial from the hindu on the topic. You can view it here if you have not done so.
Lets stop the silly denial and get to action. We owe our kids a better life.
Saturday, December 5, 2009
A silly fable.
Kamal Education Promotion Board is a non-profit organization working to advance the cause of academic achievement amongst children living in the suburban areas of Chennai. The board would like to see the children in these areas achieve better scores in their exams. It is quite evident that improving the scores would allow the students access to elite schools and subjects of their choice in the future.
The board comes up with the following recommendations that it believes will allow it to achieve its goal.
1. Teachers will be held accountable for achieving the target score in select subjects. 70% in Physics, 80% in Maths, 90% in Chemistry.
2. The questions in exams should be clear. For instance, all questions should end with a "?". Questions should require elaborate answers. Multiple choice questions and fill-in-the-blanks type questions are to be avoided.
3. The students will be required to wear white uniforms with their report card (scores) printed on them to school.
4. It is desirable that the students achieve these scores without any "additional" classes. The Board should be notified if teachers deem it necessary to train specific students with additional classes.
5. Supplementary exams for students who did not do well are banned. Students must do well in the exams that are already in place.
These recommendations are then shared with the teachers and students printed in nice glossy paper. A bunch of kids were found looking at these papers, laughing and making paper planes out of them.
There you go! That's my fable. It it not very good. That is the point.
Replace the KEPB with management, improving student scores with improving an organization's or an individual's performance. Do you see similarities between the list mentioned above and some steps management in general takes to improve performance? Are you surprised that the kids (workers in this case) don't take it seriously? Would you be surprised if the kids don't score better?
Friday, November 27, 2009
metamorphosis
For instance, the question of freedom. There are dozens for things that one wants to be free from. We want to be free of our worries, our bosses, annoying colleagues, bigotry, violence in society etc. We have concepts of freedom enshrined in our constitutions. We, (most of us, anyway) live in nation states that guarantee us a right to freedom. Technology has set us free of much of the drudgery of life. It is far easier to cook, clean, commute, communicate (and those are just words that start with "c") than it has ever been in the history of humanity. Yet, most of us feel trapped and want to be free. Why?
Friedrich Neitzsche says "Free from what? What doth that matter to Zarathustra! Clearly, however, shall thine eye show unto me: free FOR WHAT?" That actually sounds like a good point. Most of us never think about what we want to be free to do. Is that why one feels trapped?
I often find myself wanting to have a lot of free time or leisure. Who doesn't. At times wondering if taking a long break from work might free me up. I can't answer the question free to do what? Is it possible that sorting out what I want to do would actually make a difference? There are many unplanned activities that I end up finding time for at work. It might be possible to do the same in other contexts if one can identify what it needs to be. Maybe one can create the time required to pursue a hobby or learn something if one identifies what these pursuits need to be.
Another year draws to a close. I'm sure a lot of us, whether we like it or not, end up reflecting upon our lives at this time of the year. It might been a good idea to think about what one wants to be free for. Doing so might just initiate a metamorphosis in us and transform us into the butterfly we'd all love to be. Just a thought.
Sunday, November 22, 2009
The ones who care!
Clearly not all people who give me a hard time do so because they care. There are some assholes in the world who are giving me a hard time because they can do no better. It would be nice to be able to tell the two kinds of people apart.
The ones who care will probably not hesitate to let me know what they think when I have screwed things up. That should be one good rule of thumb to use to decide if one wants to be around such people. I can easily see why such people would help you grow and be a better person.
The wrong kind of people to surround yourselves with are the ones that will offer you a lot of sympathy when you fail or make mistakes. It should be obvious that such actions don't really help and have the effect of perpetuating our misery and limiting our ability to act on the circumstances that cause us to fail or make mistakes. I don't mean to say that such people are evil and/or should be avoided. They do so with the best of intentions. We tend to like people who sympathize with us and not like people who are pragmatic. That might not be in one's best interest.
The ones that care would also be of the kind who will be "truly" happy for you when you do succeed. One can usually detect "jealousy", "flattery" etc in the wrong kind.
In short, there is a case for one to be grateful to the people who give us a hard time because they care. Just something to think about.
Monday, September 14, 2009
Thoughts on improving one's creativity.
Creativity is simply the process of coming up with a new solution to a known problem. A lot of the problems one encounters in life have so many solutions that it is possible to come up with one more. To be considered a creative solution, the idea should not only be novel but also represent a significant improvement over known ideas. The people who research this topic have pointed out that there are different types of creativity. Margaret Boden for example lists three.
1. Combinational creativity.
2. Exploratory creativity.
3. Transformational creativity.
Combinational creativity is taking two known ideas and combining them in a novel way to make a new one.
Exploratory creativity is just making changes to a known solution till you get a new one. Very often this might not result in dramatic improvements. But it is possible to imagine that one gets a significantly different solution after many improvements have been added to the existing solution. The creation of new species through evolution is an example.
Transformational creativity is a category of ideas that are just new and cannot be thought to have been derived from anything else that has existed before. These are the sort of ideas that make you think that they are “truly original”. These usually come about when one thinks about a problem in a way it has never been thought of before.
Can we now try to think of how one might go about finding new solutions? The combinational approach is the easiest to do. List down all attributes that you are looking for in your solution. Look at known solutions to the problem. There is a good chance that some of these solution do some of what you want. Find a set of known solutions which spans all your requirements. You now need to combine these solutions into a new one.
A second approach would be to do a set of what-if experiments. Try to change things in a way you think will take it towards filling up the missing requirements. Chances are you will stumble upon a way to solve your problem. You could also try to map your problem to a similar problem in a different domain and see how people have dealt with the new domain. You might find a solution that applies in that domain that does what you want. This thought process might give you clues about how you can solve the problem in your domain.
The brightest ideas come about when people take a problem and think about it in a totally new way. It is not clear to me if there is a set of axioms that people use in such an approach. It is usually possible for people who get such ideas to explain the new idea using known things. It is seen that such an explanation can be advanced only after the idea has been generated though. I find that such ideas have an air of obviousness to them. The obviousness is however only as a result of hindsight though. One can track the idea down to one or more of the fundamental assumptions about known solutions having been changed.
An approach to take would be list down all the fundamental assumptions that form the part of your approach to solving the problem. You could then try to think of ways to solve the problem with one or more of the assumptions removed or changed.
I find that engineers have a preference for the exploratory style. We like to make small changes to a known solution. Usually the benefits are small as well. Another small change is then identified and so on. I think such an approach is acceptable for “optimization” type problems where one is not looking for a dramatic improvement. I don’t see this way of working resulting in very major improvements. A preference for such an approach prevents engineers from reducing the problem to its basics to look for a fundamentally different solution. One needs to make a conscious attempt to restrict the time spent in such activities. They have a way of using up a lot of people’s time. I think it makes more sense to abandon this approach if the first few things you change don’t have the desired outcome. This way of solving the problem is very much like evolution. It takes a long time to make an impact. It would be useful to realize that there are other ways to be creative as well. That could motivate people to break the loop and think of other “ways” of being creative.
I’ll need to mention that no one invents anything following any of the approaches listed above. I’m of the opinion that these are just ways to prepare your mind. My personal experience suggests that I spend a lot of time thinking about a problem using these approaches. Then something happens and an idea is born. Chance, they say, favors the prepared mind. I’m only suggesting ways to prepare your mind.
Happy inventing. May the force be with you!
Tuesday, September 8, 2009
Intelligence, Infallibility and Creativity.
The basic point the book tries to make it that the human brain is more than a computing machine. One quote from Turing that caught my attention was
If a machine is expected to be infallible, it cannot also be intelligent. There are several mathematical theorems which say almost exactly that. But these theorems say nothing about how much intelligence may be displayed if a machine makes no pretence at infallibility.
The quote somehow suggests that just a little bit of "fallibility" would go a long way in making machines intelligent and possibly suggests that allowing for a few mistakes will allow machines to reach the level of human intelligence. Clearly computers are better than humans at performing tasks using known procedures. I suspect that "creativity" or the ability to generate "new" ideas would be considered an important attribute of "Humans" that the machine would be expected to match.
A honest look at myself suggests that the machine would be required to be very significantly fallible. I find that a lot of the "ideas" that I come up with do not actually work well. I would conservatively state that about one in ten of my ideas do end up surviving serious scrutiny. I also know quite a few people (who I consider intelligent) who have at various times indicated that the ratio of "correct" to "incorrect" ideas they have is quite low and in the order of one in ten.
In my own work on successive approximation ADCs, I've found many instances where allowing circuits to make errors results in the system working better than trying to make the circuit "correct" at all times. The idea of error correction and redundancy are quite commonly used in many circuits to improve the performance of the circuit itself. My experience with such circuits suggests that one needs to allow significant errors before the advantages become significant.
In the biological sciences one encounters the phenomenon of evolution as a case where the fallibility of the DNA replication process results in the origin of new species over time. DNA replication is a very accurate process which is probably why evolution takes such a long time. It is also quite possible that the "randomness" of the process also contributes to the slow pace at which new species are "created". This could also suggest that human creativity is not entirely a random process. It can also be argued that "creativity" is not deterministic either since it is not clear what determines the "creation". The even more bizarre phenomenon of intuition probably plays a bigger part in human creativity.
One question to the readers of this blog is "What fraction of the new ideas you get end up being valid once you put them to serious scrutiny?" I would appreciate if you could leave that answer as a comment.
I also found myself wondering if "creativity" is indeed a result of intelligence. Again a simple first person introspection throws up an alternative view. Lets say I want to solve a new problem that I've encountered. My intelligence tries to solve the problem using all the tricks it already knows. Some of these tricks are useful and make some headway towards finding the solution. A lot of these tricks are however not useful and don't contribute much. A lot of effort goes into solving the problem after which a "flash of intuition" occurs which presents the "creative" solution. Another mechanism that generates the "flash of intuition" is listening to some one else describing how they have solved the problem. One goes about hearing and understanding the other person and suddenly a new idea emerges. I don't remember a time when I got a brilliant idea that solves a problem that I've not spent a lot of time thinking about.
I'm wondering if creativity occurs only when intelligence is put out of the way. In other words, creativity occurs only intelligence has been "satisfied" and/or "exhausted". One might even be tempted to argue that intelligence has been a hurdle to overcome before the creative process kicks in. There are many examples one hears where experts in a field fail to see a simple solution while a lay man who just happens to walk past offers a shockingly better solution. I know a lot of people who point out that they have been working in the same area for too long and find themselves unable to be as innovative as they had been in the past (I'm saturated feeling). It is quite possible that such "experts" will need to exhaust a large bag of tricks they already possess before they can think of a new solution to the problem.
It would be interesting to think of ways to "satisfy" one's intelligence as a way to improve ones creativity. Clearly working very hard on a problem is one way. Reading or listening to others who have solved similar problems is another. A better alternative would be brainstorming where a group of people discuss the problem in detail. Usually a lot of ideas are discussed in such sessions and quite often people do end up getting some bright ideas in the end.
Saturday, August 22, 2009
A lesson from life...
A follow up thought would be to see if you can apply lessons from life to your own life. I happened to scan through Robin Sharma's book "The Greatness Guide". One of the ideas mentioned there is that "Greatness" in life can be achieved through "evolution". You can read more of his thoughts on the topic in his article "Greatness by Evolution Vs Revolution".
I'm wondering if design groups could benefit from adapting the "Evolution" approach in their design process. A lot of us tend to change just about everything in a design from one generation to the next. I've also observed that there are some groups of people who tend to take the "Evolution" approach. Usually such people keep many things about their design the same from one "Generation" to another and restrict changes to a few target areas. It is also seen that the groups that do that are more successful than groups that take the "Change Everything" approach.
From a project management perspective, the "Evolution" approach makes a lot of sense. It is a good way to keep risks under control. Schedules are far more likely to be better predicted.
The "Change Everything" approach is believed to be superior since we tend to think that it is a good way to make large improvements. Is that really true? Is it better to be working on the problem to identify a way to get the same improvement with the least possible set of changes? Could innovators make such a change to their attitude to significantly improve the odds of success? Can projects with audacious goals be better executed by breaking them down into "Generations" which improve over time?
Just some thoughts. It would be interesting to see they make a difference in real life.
Thursday, August 6, 2009
Genetic Algorithms in the Design of Comparators.
A typical gain stage of the comparator uses a differential MOS input pair, a pair of MOSFETs to cascode the input pair, a tail current source and load resistors These basic parameters of the gain stage are parameterized. The comparator contains five such gain stages all of which have been parameterized. In addition, the design uses a couple of extra capacitors. These capacitors are also parameterized. There are about 22 parameters in the design all of which can take different values.
The iteration procedure used is as follows. I start off with a design that is reasonably close to what I want. This part of the design procedure is not automated and was performed by me. The set of 22 parameters I’ve chosen become the basis for the rest of the iterative process. A genome is a combination of the 22 parameters that go into the actual circuit. A new set of 23 genomes are generated by randomly changing one parameter in each of the new “genomes” from the base genome. Simulations are performed on all 23 circuits.
A cost function is setup to evaluate which of these 23 circuits is the “best”. I’ve used an equation of the form Noise/noise + Delay/delay + Power/power + gain/Gain as the function that evaluates these circuits where Noise, Delay, Power, Gain are the desired values and noise, delay, power, gain are results from the actual circuit. The best of these circuits is chosen by simply making a numeric comparison based on the results of the simulations on these circuits.
The best of the 23 circuits then becomes the new base design. The best genome is taken as the new base genome and changed again at random. This process is repeated multiple times. I wrote a PERL script to perform the iterations. Spice3 performs the circuit simulations and a wrapper is used to extract the results. The PERL script reads the output of the wrapper script and computes the “cost function” that represents an “evaluation” of the circuit.
The iteration picks the best out of all the trials performed. It is therefore obvious that the “cost function” will keep on increasing after an iteration representing a better circuit each time. It should also be noted that there is no such thing as convergence in these iterations. Iteration simply produces a faster or a lower noise or a lower power or a higher gain comparator. One can also expect any iteration to just produce a marginally better comparator. The compounded effect of multiple iterations is to produce a significantly better comparator.
It might be useful to set up the “evaluation” function to set a limit on how good any given parameter gets by clamping the value used in the function to its desired value. Such a limit would make designs in which one parameter improves beyond desired levels to not be reported as better which should result in choices that improve the other parameters to be chosen. For example, there is not much to be gained by having the comparator’s gain increase beyond “Gain”. Values above “Gain” should result in the gain/Gain ratio being limited to 1.
A random process like this is also likely to continue doing things that are “easy” to do. If it is “easier” to achieve increase in gain through random changes than to improve some of the other parameters, the process might just keep increasing the gain rather than try to improve the other parameters. The “limiting” function in the evaluator also helps to stop this “run” away trend in the iterative process.
The design I tried this on had six parameters that were important. Two Noise (Targets = 25 and 6), Power (Target = 900), Two delays (Target = 15 and 20) and Gain (Target = 80). The table below shows how the design performed through the iterative process. I let the PERL script run 20 iterations through the design and looked at the measured parameters.
Noise1 Noise2 Power Delay1 Delay2 Gain
28.5 6.5 871.3 16.9 23 71.4
28.4 6.5 880.6 16.6 22.9 73
28.2 6.5 918.6 16 22.6 77.9
28.4 6.3 918.7 15.9 22.2 77.2
27.6 5.9 918.4 16.1 22.5 78.4
27.4 5.9 937.6 15.8 22.3 81.4
27.8 5.9 937.5 15.4 22.3 81.4
28.1 5.9 897.9 15.5 22.4 79.7
28.4 5.9 897.8 15.4 22 79.6
28.1 5.9 917.2 15.1 22 82
27.9 5.9 917.1 15.1 22 82.6
28.1 5.9 917.1 15 22 82.6
28 5.9 917.1 15 22 82.7
28.3 5.9 917.1 15 21.6 81.8
28 5.9 936.8 14.8 21.6 83.7
27.4 5.9 956.5 14.7 21.6 84.8
25.8 5.9 976.6 14.7 21.5 83.9
25.1 5.9 976.7 14.8 21.7 83.6
25.3 5.9 976.7 14.7 21.7 83.6
24.9 5.8 986.7 14.7 21.7 83.8
It can be seen from the table above that the initial steps mostly resulted in the gain parameter being improved. It can also be seen that most of the target parameters of the design are close to their desired values.
I investigated this approach after reading/hearing a couple of suggestions from others which I thought I should investigate. The first one is from Donald Knuth in “The Art of Computer Programming” in the context of improved searching algorithms. His comment was that “life” gives you good examples of how to build a good search algorithm. The second comment is from Steve Jones in the lecture “Is Human Evolution Over?” where he outlines how “Natural Selection” was used to build a better Nozzle. The approach used there was to just change 10 things at random; evaluate the nozzles; pick the best and repeat the process multiple times. The Wikipedia entry on "Evolution Strategy" relates to the application of such a principle to optimization problems. I’m simply applying these suggestions to the problem of designing a better comparator.
The second suggestion is very easily seen to be sensible and does work quite well when applied to the problem of designing a comparator. You do get a better comparator each time you go through the process. The iterations do pick up some improvements which appear to accumulate as the process is repeated.
The other part is what one can learn from the changes that these iterations have made (which I guess is how one should read Knuth’s comment).
The iterative process just picks up “improvements” along the way. The process might pick up different “improvements” when run again. The process does appear to pick up similar “improvements” when run multiple times though. Looking at these changes should give the designer some thoughts on how to “optimize” or “improve” the design.
One interesting trend that I noticed was in relation to the size of the input pairs. I’d used 48, 6, 6, 6 and 6 fingers in the five gain stages in the original design. The iterative process appears to prefer fingers which reduce first and increase later. For example, sequences like 48, 4, 2, 6, and 8 for the five stages appear to be thrown up at the end of most runs using the original design. This does make a fair bit of sense. The initial stages have very little signal and should see the least possible load to amplify the signals faster. There is a point beyond which the signals become large. Subsequent stages are better off at driving larger gain stages which also result in higher overall gain.
The trend with the tail currents is very similar to the input pair sizes. The base design used 400, 160, 40, 40 and 40 as the tail currents. The iterative process appears to modify these to 440, 120, 60, 90 and 90. A lesson one could learn from this is probably that the currents in the gain stages should drop towards the “middle” of the cascade and increase beyond that point. The final gain stages are very likely to be slewing all the time.
Sunday, August 2, 2009
Thoughts on execution
It is important to acknowledge that the "complexity" of any project cannot be completely determined at the start. It is far more common for designers to make things up as they go about designing their products. Most designers are also "innovators" and are likely to generate "ideas" that can improve their design. These innovations also occur during the design process. Most designers would agree that their design ended up being a whole lot different from what they thought it would be at the start of the design cycle.
It is also very likely that "customers" identify changes that would benefit their end design while designers are creating a small part of it. Such changes could also come at any point in the design cycle resulting in changes in the "complexity" of the project during its development.
It is very rare for a product to be designed with just one customer or application in mind. Engineers involved in marketing a product will more often than not identify new "features" that would allow the design to be suitable for more customers and applications during the design process as well. These changes will also occur during the design cycle resulting in significant change in the complexity of the design.
It is possible for designers to limit changes that they cause to the complexity of the project by limiting the number of improvements and changes they make. Designers have very little control over changes that are caused due to new features and requirements being added from customers and marketing.
The challenge facing design groups is to manage the changing complexity of the project within the time that is available for the design process. Quite often designers will complain that the scope of the project changes too much during the design process. Interestingly they don't complain about the changes they've chosen to make. Designers need to be aware that the scope of the project is going to change quite significantly during the development process.
The design process usually has multiple steps. The first of which is to derive a block diagram to show how the design performs the required function. The second step is to create the set of blocks that are required to implement the block diagram. Ideally the last phase of the design cycle should be an optimization phase where each block is "optimized" to perform the function "optimally" in the presence of the other blocks around it.
I've observed that the "optimization" step is taken up early in the design process. This step tends to get repeated every time there is a change in the scope of the project resulting in large cycle time overruns. Premature optimization is an avoidable cause that results in poor execution. I've also noticed that some designer manage this better than others. It is common for such designers to have "automated" the "optimization" process the first time around. This allows them the flexibility to use computers rather than their time to perform the optimization. Computers are clearly better suited for this kind of work than human beings. Some designers are not particularly interested in optimization and would rather focus on methods and topologies. In general teams that have people with such an attitude tend to execute better than the other. Designers of the kind that want to optimize themselves are very likely to cause large delays in project executions. It might be useful to train such people in "automated optimization" techniques.
A variant of "premature optimization" is trying to squeeze the maximum out of a given design too early. This is so easily avoidable and quite frankly adds very little value to the design. In general this sort of "optimization" focusses on second order effects and tries to improve the design by tweaking these effects to "precision". It might be preferable to delay if not entirely avoid such tricks in designs. I find that the time it takes to achieve the "tweaks" is better used inventing a better method or design.
Designers could avoid optimization of their designs in the early part of the design cycle so as to minimize rework. It would be beneficial to use existing designs as well. Reuse in general would require lesser effort and minimize chances of errors.
In general, "high end" projects tend to be very poorly executed. Designers working on such projects tend to make many silly errors. It is quite common for such projects to be over schedule by the time the designer gets things "working" with minor shortcomings. It might be possible that high visibility and the potential for high rewards (self perceived and given by others) tends to diminish the designer's judgement. It is also noticed that management tends to take a liberal view of silly errors in such projects. You can get away with sloppy work on these kind of projects. Management should probably treat errors on face value and deal with them without being prejudiced by the "visibility" that a project has. As Scott Adams says "By Definition, risk-takers fail often. So do Morons. In practice it is difficult to sort them out". It is entirely possible that a smart designer makes dumb mistakes for which he should be held accountable. Holding the designer accountable is probably beneficial to that person in the long run. A consistent approach to dealing with "execution" errors on the part of management will go a long way in improving project execution in all kinds of projects.
It is quite common for designers to think that "pressure" resulting from high visibility causes errors. I happen to think that high "visibility" just causes such errors to be noticed. I think "pressure" in "high end" projects is a result of poor execution and not a cause. It might be useful to focus on the work that needs to be done and not be thinking about the "impact" and/or "results" while working on these kinds of projects. Designers working on high "visibility" projects should be offered a decent support structure. Management should also attempt to ensure that a modest amount of "perspective" is retained. It might be useful to reiterate that these high end projects are in the end just another project. History suggests that such projects rarely end on a high note. A lot of the "visibility" stuff just builds things up making the fall which is inevitable hard to deal with. Keeping morale up through such projects will also require intervention from management. Low morale is certainly a recipe for poor execution.
In a group of people, good "executors" are bound to exist. Management should recognize this trait in these people and ensure that they are rewarded and recognized appropriately for the same. The presence of such people is bound to have an influence on the others in the group. Most designers are capable of learning. It is only reasonable to expect that they will pick some tricks from the good "executors". A good recognition process for these designers will ensure that the group knows where to go for help on the topic of execution.
Clearly this blog is getting too long. I'll just sign off now. I don't think the thoughts presented well either. I'm still organizing my thoughts on the topic.
Wednesday, July 29, 2009
Dealing with Discontent - Take a vacation.
I will start off with a quote. “If you want to untie a knot, you must know how you tied it in the first place”. The question that arises is how does one end up being so discontent in the first place?
One thing that becomes a bit more obvious as I think about this is that I have at many times made choices and never bothered to check if they were making me happy. The first choice makes me mildly unhappy. The second one makes is a bit worse and so on. It becomes increasingly obvious that one’s discontent is in a large part a consequence of not making the choices that could have made a difference. In general, we tend to ignore things till they become very big. The problem is that the cost of change is now much higher than it would have been a few years ago. The cost complication makes you persist with bad choices even when it is so obvious that this is a price that has to be paid if you ever want to be happy. The knot is most likely tied when one refuses to make the choices required to achieve happiness.
If you are indeed so unhappy with your job the obvious solution is to make some changes. How can you ever expect to be happy if you do not change? Often I find myself thinking that some miracle will happen and I will somehow find a way to be happy. Regrettably that has not happened to date. I’m wondering if it ever will.
The miracle is actually too easy to actualize. All one needs to do is to stop being complacent and initiate some change in his/her job. Most discontent people will agree that just about any change would make a difference. Most people don’t make any. I have not. It is almost as if one has a compulsive need to be miserable. Is it possible that people who feel miserable will make choices that only compound their misery?
There is a school of thought amongst people who think and reason out why societies and cultures are the way they are that tries to establish similarities between “genes” and how they ensure their own survival and thoughts (also called memes) and how these ensure their own survival. It has been postulated that thoughts that fit in with others that already exist in your mind are more likely to “survive” and find acceptability than the ones that do not fit in. One suggestion that is offered to people who are unhappy with their jobs is to go on vacation. Many people have found that taking a break helps to “clear” their mind enabling them to make the choices that result in increased satisfaction. It is possible that vacations or breaks replace “ideas” and “thoughts” in the mind with others resulting in some choices which were not “suitable” while on the job more acceptable to the mind.
Is it possible that miserable people are a victim of neuro-chemical crap that prevents them from making the changes required? Maybe your mind is super saturated with “misery” chemicals which dilute anything that could results in “satisfaction”.
Is it possible that “discontent” people can find themselves more likely to make the changes required to find “satisfaction” if they take a break from their “jobs”? Is all you need a vacation? Are you perpetuating your discontent by not creating a situation where meaningful changes become acceptable to you?
Sunday, July 19, 2009
Dealing with Discontentment.
The word "Discontentment", after I spent some time thinking about it, lays it out very well. We have "filled" our lives up with all the things that we don't need but we thought we did. The "contents" of our "lives" are not the things that bring us happiness. As Ramanujam urges people do need to change the contents of their lives. While this might sound rather easy to do, it is in actuality a very hard thing to do.
It is very important to think about yourself in good detail before you choose how you want to change your life. One thing that I've realized is that at some point in the past, I did choose all the things to fill my life with all the things I have now. I did go wrong once. Actually I went wrong multiple times. I did make some changes which again did not have the desired effect. So, if you think that just changing a few things around is going to make a difference, you are wrong. You will eventually reach the point of "Disillusionment". Before you go any further, ask yourselves if you are just "Discontent" or "Disillusioned". I think it is very important to fail multiple times and actually reach the point of being "Disillusioned". Any changes you make to your life before that are very likely to be poorly thought through.
Here is what I've learned after what appears to be a lifetime of discontent and disillusionment. All choices you make are wrong and are doomed to fail. The problem is that one tends to put the cart before the horse in this situation. I can never pick today what will make me"content" tomorrow simply because when tomorrow comes I'm not the person who picked. How can I know what will make me happy tomorrow? The most I can do is guess. Such an approach relies on my guess being accurate. I have to face the reality that I'm too complicated a person to be predictable. For starters, I'm not a linear system. My reactions to situations are very variable. For instance, how I laugh when I hear a joke is so unpredictable. I've at many times laughed out of control at some jokes and can barely manage a smile at other times. I guess the point I'm trying to make is that any approach that relies on me trying to predict my state in the future is likely to be widely off the mark. As Ramanujam suggests, one needs to shorten the "extrapolation" window and create "milestones" that are not far out in the future. Steve Jobs touches upon this topic rather eloquently in his "Commencement Address at Stanford" with his first story and points out that you actually cannot connect the dots forward. Take the argument to their logical conclusion and you will realize that the only solution to the problem is to be "content" now.
That's not easy. It will probably take you a lot of work to get there. You can start by trying to set yourselves a goal to reach everyday. Start your day off with a simple plan that you will be content if you achieve this today. Continue this process for a while till your mind is conditioned to accept "contentment" based on daily goals. Most of us are so used to thinking so far into the future that being "content" on a moment to moment basis is way too big a leap. I could not help noticing that my baby (only 8 months old) appears to not care for anything beyond the immediate present. I say that just to point out that all of us did have this ability which we have over years lost. It is certainly going to be a challenge to undo years of "conditioning" that has resulted in us being the way we are. I think a lot of patience and efforts will be required.
I also want to add that I cannot say with any certainity that such an approach will work. I don't know that yet. I just happen to want to share my thoughts on the topic. I am by no stretch of imagination an expert here. This blog in any case sounds quite preachy. Please don't take it too seriously. Give it some thought.
Saturday, July 18, 2009
The Human Head Shake.
Indian mothers feed their babies sitting on the floor, with their legs stretched out. The baby rests in the valley between the mothers leg and faces upwards. The object used to feed the baby which could be a spoon or the mother’s hand approaches the baby sideways. Quite often the baby needs to indicate to the mother that it does not want the food that it is being fed. Sometimes because the baby is just not ready for another mouthful and at other instances because the baby does not like the food. The baby in such a situation naturally expresses this by moving its head away from the feeding hand or spoon. Since the baby’s head rests on the mother’s legs, it is incapable of moving its head backwards. The baby moves its head sideways to communicate with the mother. This would condition the baby to move its head sideways to indicate no.
Western mothers, to the best of my knowledge, feed their babies on a high chair with the mother in front of the baby. The feeding hand or more likely the spoon approaches the baby from the front. The natural evasive action from the baby would be to move its head backwards and forwards. This would condition the baby to move its head backwards and forwards to indicate no.
It is quite likely that this behavior is carried into adult life and could actually also have been adopted by adults who observe this in their babies resulting in a “culture” which shakes the head sideways in one set of people and back and forth in others. Most languages use some form of “ma” and “pa” for the words that mean mother and father since babies appear to make these sounds much before other sounds.
I advance this “explanation” based on my observation of my daughter and what I know of western culture. It would be interesting to see if this is indeed true.
Thursday, July 16, 2009
A complexity argument against creationism.
The “Intelligent Design Theory” suffers from a simple fallacy that it uses the extreme improbability of the complexities that exist in life forms to increase the probability of a “creator” which is infinitely more complex than any known life. Richard Dawkins does a rather good job of exposing the inadequacies of this theory in his wonderfully readable creation “The God Delusion”. A lot of the modern day “evolutionists” have also pointed out that arguments justifying “creationism” tend to appear from “Gaps” in the knowledge of the process of evolution.
It occurred to me that both “theories” focus on the “qualitative” aspects of life. There is more to life on earth than that. It occurred to me that one should investigate if there are other such aspects where the differences in the two theories can be tested better. For example, could we evaluate the two theories in relation to the “quantitative” aspects of life? Does one theory fare much better than the other?
Once you ask that question, the answer is almost immediate. A “Creationist” view of life requires that a “creator” pick and choose which life exists. This would require that life progress linearly in quantity at a rate determined by the time a “creator” spends in performing an act of creation. The “Evolutionist” view provides life with an ability of increase exponentially in numbers. People familiar with the mathematics of complexity of algorithms would phrase this as “Creation is an algorithm with O (N) complexity while Evolution is an algorithm with O (log (N)) complexity”. Which of the two would stand a chance of justifying the enormous quantity of “life” that exists on earth?
Just how much life exists on earth anyway? For starters there are about 6,000,000,000 of us. There is the rest of the animal kingdom, plants, microbes…More than a million species of life have been identified. I would conservatively put the total number of living things on earth as a number to the order of 1e30.
How does “creationism” fare here? If a creator takes an atto-second (1e-18 seconds) to create one of them, the process would take 1e12 seconds or about 31710 years. I don’t think most of them live that long to make the process work. The smallest known living organism is about 400 nM in size. Light takes about 1e-15 seconds to pass through that. It is a generous concession on my part to postulate that each organism can be “created” in an atto-second.
How about “Evolution”? Clearly evolution allows for species to be created as a result of “genetic modifications” introduced in the process of “reproduction”. Reproduction gives life the ability to increase in quantity “exponentially”. Life can start in small quantities and increase dramatically fast in short time. You can start with a single cell that divides once in a day and reach a large number of cells like 1e30 in about 100 days. A single human egg fertilized with a single sperm through the process of cell division with “modifications” in the cells as appropriate creates a human being with all organs in place in about 9 months. Every one of us is a living example of the power of the process of “Descent with Modification” to result in enormous diversity in “qualitative” as well as “quantitative” aspects of life. Evolution does stand a chance of explaining the enormous quantity of life that exists on earth.
The conclusion you should be coming to is that not all life is “created”. It is still possible for the “Intelligent Design” theory to survive with a modification that some (if not all) speciation is a result of intervention from a “creator”.
I also recognize that a lot of “religious” people will take offense at the conclusions that I have drawn. I wish to say the following to them. I’ve very consciously avoided using the word “God” through the discussion above with the exception of where I’ve cited the title of Richard Dawkins’s book. I consider myself to be a deeply religious person. I’ve at multiple instances in my life been struck with awe with the benevolence that abounds in nature. I cannot but come to the conclusion that there is much that I’ve to be grateful for. “God” to me is the face I put on “benevolence”. I do visit places of worship (when I can) and find myself thanking “God” for all that I’ve been given. I do however find that “religion” reduces “God” to such pettiness that I’m unable to accept as a means to express one’s gratitude. I don’t understand why any human would deem it appropriate to require “God” to match his “Beliefs”. Would a “benevolent” “God” not deem is appropriate to let life be?
Wednesday, April 15, 2009
Coping with dishonesty in the work-place.
The first question is remarkably easy to answer. These things happen because there is no reprimand for people indulging in “plagiarism”. All one needs to do it to “forget” to cite the contribution of a person to the work in question so as to intentionally or otherwise create an impression that the work in question is attributable to oneself. The person who does so ends up being given the credit for the work. It is surprisingly easy to pass such actions off as an innocent oversight on the part of the person indulging in it. It is obvious that very little can be presented in the form of evidence to establish “intent” and people who do this invariably get away with it. All one needs to say is one was just presenting the “invention” or “solution” and did not pay much attention to getting the attributions right. After all how does it matter who in the organization was the originator? The organization did benefit from the “invention” even if it was not attributed properly. The reality is that such conduct does leave the person at the receiving end of the over-sight pretty disgusted and such action is indeed “unethical”.
If this does happen to you, your reactions to the event would be to ignore it if the person were doing it for the first time. You would also find yourselves rationalizing the person’s actions as desperation to get noticed. Over time, you will also realize that it is so common in the work-place and will do nothing about it since you do not want to be a whiner by raising a flag. Your inaction ends up reinforcing the “offenders” belief that it is acceptable to indulge in such actions. The “offender” continues to behave the same way and you will find yourselves increasingly unable to accept it as unintentional. If you finally do get around to flagging it to higher authorities, you will find them helpless about it. The most you will get is some sympathy. It is quite likely that they have been through this before and found themselves unable to do anything about it and are very likely to tell you that it is a lost cause and you are better off moving on.
So, you are left fuming. Doing nothing is not going to help your cause at all. It is quite unlikely that you will get over the negativity in yourselves without doing something about it. I’d recommend following the approach “Eckhart Tolle” recommends in his book “The Power of Now”. There are three things you can do about any problem that affects
- Remove yourself from this situation.
- Change it.
- Accept it.
The first suggestion implies that you try to stay away from such people. Let your manager know that you are no longer interested in working on any “assignments” which involve collaborating with the offender. Clarify to your manager that such an approach does ensure your emotional well-being and consequently is required to keep your personal contributions significant. It is my personal experience that this approach does not work. People will continue to find a way to steal credit for your work. You cannot hide. I’ve found that leaving the problem unattended does ensure that the next offence is bigger than the previous ones. Also worth noting is that you will always perceive the next offence to be bigger even if it is minor in nature.
The second approach to try would be to change the situation that exists. Changing others is usually a dead-end. The most you can do is “Be the change you want to see in the world”. Make it a point to attribute any ideas you present to its originators and give credit where it is due. It is quite likely that some people will get the idea and start doing the same. This might set a culture of “attribution” in your group that will help alleviate the problem. Be advised that there are enough unscrupulous elements around who will continue to annoy you.
That leaves you with only one thing to do. Accept that you live in an imperfect world. A certain amount of dishonesty exists. In the long run, dishonest people are bound to be less successful than honest ones. Just focus on your own work and keep improving. Some of your work will be stolen and there is nothing you can do about it. It is also true that the time you spend bothering is actually time subtracted from your life that you could put to better use. If you want to be happy, you will need to make your life to do entirely with yourself and almost nothing to do with others. I consider myself very lucky and indeed grateful to be working for a manager who was able to take me here. I also recognize that most are not so lucky. If you are one of them, please consider looking into the words of the many great masters who have shared their wisdom with the world. The ones I’ve found useful are
- God talks with Arjuna. The Bhagawat Gita by Paramahansa Yogananda.
- “Inner War and Peace”. Timeless solutions to conflict from the Bhagawat Gita. Compiled talks by Osho.
- “The Power of Now” by Eckhart Tolle.
I would also like to point out that it might be beneficial to encounter the futility of the approaches that I’ve cited as unlikely to work before you get to the state of acceptance. I found that such a journey shapes your character and prepares you to let go and move on. It is quite likely that you might be able to move on without going through the pain of failing to deal with it. It is entirely possible that the lessons you have learned through the other “pains” you have experienced in life have prepared you adequately to let go and move on. It might also be helpful for you to relate this problem to the others you have faced in life. It appears that one does have to let go and move on to lead a life where suffering and frustration are minimal.
In short, the next time someone steals credit for your work, fume in anger, shake you head in disgust and move on.
I will sign off with a quote my wife introduced to me. It is from Sri Sri Ravishankar of the “Art of Living” foundation. “Pain is inevitable. Suffering is optional”.